Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Nat Immunol ; 24(6): 966-978, 2023 06.
Article in English | MEDLINE | ID: covidwho-20245297

ABSTRACT

High-risk groups, including Indigenous people, are at risk of severe COVID-19. Here we found that Australian First Nations peoples elicit effective immune responses to COVID-19 BNT162b2 vaccination, including neutralizing antibodies, receptor-binding domain (RBD) antibodies, SARS-CoV-2 spike-specific B cells, and CD4+ and CD8+ T cells. In First Nations participants, RBD IgG antibody titers were correlated with body mass index and negatively correlated with age. Reduced RBD antibodies, spike-specific B cells and follicular helper T cells were found in vaccinated participants with chronic conditions (diabetes, renal disease) and were strongly associated with altered glycosylation of IgG and increased interleukin-18 levels in the plasma. These immune perturbations were also found in non-Indigenous people with comorbidities, indicating that they were related to comorbidities rather than ethnicity. However, our study is of a great importance to First Nations peoples who have disproportionate rates of chronic comorbidities and provides evidence of robust immune responses after COVID-19 vaccination in Indigenous people.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , BNT162 Vaccine , COVID-19/prevention & control , CD8-Positive T-Lymphocytes , Australia/epidemiology , SARS-CoV-2 , Immunoglobulin G , Antibodies, Neutralizing , Immunity , Antibodies, Viral , Vaccination
2.
JCI Insight ; 8(7)2023 04 10.
Article in English | MEDLINE | ID: covidwho-2296026

ABSTRACT

Pregnancy poses a greater risk for severe COVID-19; however, underlying immunological changes associated with SARS-CoV-2 during pregnancy are poorly understood. We defined immune responses to SARS-CoV-2 in unvaccinated pregnant and nonpregnant women with acute and convalescent COVID-19, quantifying 217 immunological parameters. Humoral responses to SARS-CoV-2 were similar in pregnant and nonpregnant women, although our systems serology approach revealed distinct antibody and FcγR profiles between pregnant and nonpregnant women. Cellular analyses demonstrated marked differences in NK cell and unconventional T cell activation dynamics in pregnant women. Healthy pregnant women displayed preactivated NK cells and γδ T cells when compared with healthy nonpregnant women, which remained unchanged during acute and convalescent COVID-19. Conversely, nonpregnant women had prototypical activation of NK and γδ T cells. Activation of CD4+ and CD8+ T cells and T follicular helper cells was similar in SARS-CoV-2-infected pregnant and nonpregnant women, while antibody-secreting B cells were increased in pregnant women during acute COVID-19. Elevated levels of IL-8, IL-10, and IL-18 were found in pregnant women in their healthy state, and these cytokine levels remained elevated during acute and convalescent COVID-19. Collectively, we demonstrate perturbations in NK cell and γδ T cell activation in unvaccinated pregnant women with COVID-19, which may impact disease progression and severity during pregnancy.


Subject(s)
COVID-19 , Pregnancy , Female , Humans , SARS-CoV-2 , Killer Cells, Natural , CD8-Positive T-Lymphocytes , Antibodies
3.
Immunity ; 2023.
Article in English | EuropePMC | ID: covidwho-2267118

ABSTRACT

While the protective role of neutralising antibodies against COVID-19 is well-established, questions remain about the relative importance of cellular immunity. Using 6 pMHC-multimers in a cohort with early and frequent sampling, we define the phenotype and kinetics of recalled and primary T cell responses following Delta or Omicron breakthrough infection in previously vaccinated individuals. Recall of spike-specific CD4+ T cells was rapid, with cellular proliferation and extensive activation evident as early as 1 day post-symptom onset. Similarly, spike-specific CD8+ T cells were rapidly activated but showed variable degrees of expansion. The frequency of activated SARS-CoV-2-specific CD8+ T cells at baseline and peak inversely correlated with peak SARS-CoV-2 RNA levels in nasal swabs and accelerated viral clearance. Our study demonstrates rapid and extensive recall of memory T cell populations occurs early after breakthrough infection and suggests that CD8+ T cells contribute to the control of viral replication in breakthrough SARS-CoV-2 infections. Graphical Our understanding of T cell responses to SARS-CoV-2 vaccination and breakthrough infection has lagged behind B cells and antibodies. Here, Koutsakos et al utilize longitudinal sampling to demonstrate rapid activation of SARS-CoV-2-specific CD4+ and CD8+ T cells during breakthrough infection. Furthermore, Spike-specific CD8+ T cell activation correlates with viral clearance.

4.
Immunity ; 56(4): 879-892.e4, 2023 04 11.
Article in English | MEDLINE | ID: covidwho-2267119

ABSTRACT

Although the protective role of neutralizing antibodies against COVID-19 is well established, questions remain about the relative importance of cellular immunity. Using 6 pMHC multimers in a cohort with early and frequent sampling, we define the phenotype and kinetics of recalled and primary T cell responses following Delta or Omicron breakthrough infection in previously vaccinated individuals. Recall of spike-specific CD4+ T cells was rapid, with cellular proliferation and extensive activation evident as early as 1 day post symptom onset. Similarly, spike-specific CD8+ T cells were rapidly activated but showed variable degrees of expansion. The frequency of activated SARS-CoV-2-specific CD8+ T cells at baseline and peak inversely correlated with peak SARS-CoV-2 RNA levels in nasal swabs and accelerated viral clearance. Our study demonstrates that a rapid and extensive recall of memory T cell populations occurs early after breakthrough infection and suggests that CD8+ T cells contribute to the control of viral replication in breakthrough SARS-CoV-2 infections.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , CD8-Positive T-Lymphocytes , Breakthrough Infections , RNA, Viral , Antibodies, Neutralizing , Antibodies, Viral , Vaccination
5.
Nat Med ; 29(3): 574-578, 2023 03.
Article in English | MEDLINE | ID: covidwho-2266298

ABSTRACT

Booster vaccination for the prevention of Coronavirus Disease 2019 (COVID-19) is required to overcome loss of protection due to waning immunity and the spread of novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. Studies have assessed the ability of existing ancestral-based vaccines as well as novel variant-modified vaccine regimens to boost immunity to different variants, and a crucial question is to assess the relative benefits of these different approaches. Here we aggregate data on neutralization titers from 14 reports (three published papers, eight preprints, two press releases and notes of one advisory committee meeting) comparing booster vaccination with the current ancestral-based vaccines or variant-modified vaccines. Using these data, we compare the immunogenicity of different vaccination regimens and predict the relative protection of booster vaccines under different scenarios. We predict that boosting with ancestral vaccines can markedly enhance protection against both symptomatic and severe disease from SARS-CoV-2 variant viruses, although variant-modified vaccines may provide additional protection, even if not matched to the circulating variants. This work provides an evidence-based framework to inform choices on future SARS-CoV-2 vaccine regimens.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , SARS-CoV-2 , COVID-19/prevention & control , Antibodies, Viral
6.
Nat Commun ; 14(1): 1633, 2023 03 24.
Article in English | MEDLINE | ID: covidwho-2255813

ABSTRACT

Vaccine protection from symptomatic SARS-CoV-2 infection has been shown to be strongly correlated with neutralising antibody titres; however, this has not yet been demonstrated for severe COVID-19. To explore whether this relationship also holds for severe COVID-19, we performed a systematic search for studies reporting on protection against different SARS-CoV-2 clinical endpoints and extracted data from 15 studies. Since matched neutralising antibody titres were not available, we used the vaccine regimen, time since vaccination and variant of concern to predict corresponding neutralising antibody titres. We then compared the observed vaccine effectiveness reported in these studies to the protection predicted by a previously published model of the relationship between neutralising antibody titre and vaccine effectiveness against severe COVID-19. We find that predicted neutralising antibody titres are strongly correlated with observed vaccine effectiveness against symptomatic (Spearman [Formula: see text] = 0.95, p < 0.001) and severe (Spearman [Formula: see text] = 0.72, p < 0.001 for both) COVID-19 and that the loss of neutralising antibodies over time and to new variants are strongly predictive of observed vaccine protection against severe COVID-19.


Subject(s)
COVID-19 , Humans , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , SARS-CoV-2 , Vaccination , Vaccine Efficacy
7.
Emerg Infect Dis ; 29(2): 381-388, 2023 02.
Article in English | MEDLINE | ID: covidwho-2215193

ABSTRACT

Several studies have shown that neutralizing antibody levels correlate with immune protection from COVID-19 and have estimated the relationship between neutralizing antibodies and protection. However, results of these studies vary in terms of estimates of the level of neutralizing antibodies required for protection. By normalizing antibody titers, we found that study results converge on a consistent relationship between antibody levels and protection from COVID-19. This finding can be useful for planning future vaccine use, determining population immunity, and reducing the global effects of the COVID-19 pandemic.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Pandemics/prevention & control , Antibodies, Neutralizing , COVID-19 Vaccines , Antibodies, Viral , Spike Glycoprotein, Coronavirus
8.
Immunol Cell Biol ; 100(10): 750-752, 2022 11.
Article in English | MEDLINE | ID: covidwho-2113212

ABSTRACT

A recently published article has confirmed that a novel immunization method of sustained and escalating antigen delivery augments the magnitude, quality and durability of humoral immune responses.


Subject(s)
HIV-1 , Immunity, Humoral , Germinal Center , Antigens , Immunization
9.
Lancet Microbe ; 3(1): e52-e61, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1915217

ABSTRACT

BACKGROUND: Several SARS-CoV-2 variants of concern have been identified that partly escape serum neutralisation elicited by current vaccines. Studies have also shown that vaccines demonstrate reduced protection against symptomatic infection with SARS-CoV-2 variants. We explored whether in-vitro neutralisation titres remain predictive of vaccine protection from infection with SARS-CoV-2 variants. METHODS: In this meta-analysis, we analysed published data from 24 identified studies on in-vitro neutralisation and clinical protection to understand the loss of neutralisation to existing SARS-CoV-2 variants of concern. We integrated the results of this analysis into our existing statistical model relating in-vitro neutralisation to protection (parameterised on data from ancestral virus infection) to estimate vaccine efficacy against SARS-CoV-2 variants. We also analysed data on boosting of vaccine responses and use the model to predict the impact of booster vaccination on protection against SARS-CoV-2 variants. FINDINGS: The neutralising activity against the ancestral SARS-CoV-2 was highly predictive of neutralisation of variants of concern. Decreases in neutralisation titre to the alpha (1·6-fold), beta (8·8-fold), gamma (3·5-fold), and delta (3·9-fold) variants (compared to the ancestral virus) were not significantly different between different vaccines. Neutralisation remained strongly correlated with protection from symptomatic infection with SARS-CoV-2 variants of concern (r S=0·81, p=0·0005) and the existing model remained predictive of vaccine efficacy against variants of concern once decreases in neutralisation to the variants of concern were incorporated. Modelling of predicted vaccine efficacy against variants over time suggested that protection against symptomatic infection might decrease below 50% within the first year after vaccination for some vaccines. Boosting of previously infected individuals with existing vaccines (which target ancestral virus) is predicted to provide a higher degree of protection from infection with variants of concern than primary vaccination schedules alone. INTERPRETATION: In-vitro neutralisation titres remain a correlate of protection from SARS-CoV-2 variants and modelling of the effects of waning immunity predicts a loss of protection to the variants after vaccination. However, booster vaccination with current vaccines should enable higher neutralisation to SARS-CoV-2 variants than is achieved with primary vaccination, which is predicted to provide robust protection from severe infection outcomes with the current SARS-CoV-2 variants of concern, at least in the medium term. FUNDING: The National Health and Medical Research Council (Australia), the Medical Research Future Fund (Australia), and the Victorian Government.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/epidemiology , COVID-19 Vaccines , Humans , SARS-CoV-2/genetics
10.
Nat Microbiol ; 7(6): 896-908, 2022 06.
Article in English | MEDLINE | ID: covidwho-1873507

ABSTRACT

Genetically distinct variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have emerged since the start of the COVID-19 pandemic. Over this period, we developed a rapid platform (R-20) for viral isolation and characterization using primary remnant diagnostic swabs. This, combined with quarantine testing and genomics surveillance, enabled the rapid isolation and characterization of all major SARS-CoV-2 variants circulating in Australia in 2021. Our platform facilitated viral variant isolation, rapid resolution of variant fitness using nasopharyngeal swabs and ranking of evasion of neutralizing antibodies. In late 2021, variant of concern Omicron (B1.1.529) emerged. Using our platform, we detected and characterized SARS-CoV-2 VOC Omicron. We show that Omicron effectively evades neutralization antibodies and has a different entry route that is TMPRSS2-independent. Our low-cost platform is available to all and can detect all variants of SARS-CoV-2 studied so far, with the main limitation being that our platform still requires appropriate biocontainment.


Subject(s)
COVID-19 , SARS-CoV-2 , Australia , COVID-19/diagnosis , Humans , Pandemics , SARS-CoV-2/genetics
11.
Immunity ; 55(7): 1316-1326.e4, 2022 07 12.
Article in English | MEDLINE | ID: covidwho-1867266

ABSTRACT

Vaccination against SARS-CoV-2 protects from infection and improves clinical outcomes in breakthrough infections, likely reflecting residual vaccine-elicited immunity and recall of immunological memory. Here, we define the early kinetics of spike-specific humoral and cellular immunity after vaccination of seropositive individuals and after Delta or Omicron breakthrough infection in vaccinated individuals. Early longitudinal sampling revealed the timing and magnitude of recall, with the phenotypic activation of B cells preceding an increase in neutralizing antibody titers. While vaccination of seropositive individuals resulted in robust recall of humoral and T cell immunity, recall of vaccine-elicited responses was delayed and variable in magnitude during breakthrough infections and depended on the infecting variant of concern. While the delayed kinetics of immune recall provides a potential mechanism for the lack of early control of viral replication, the recall of antibodies coincided with viral clearance and likely underpins the protective effects of vaccination against severe COVID-19.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Neutralizing , Antibodies, Viral , Humans , SARS-CoV-2 , Vaccination
12.
Nat Rev Immunol ; 22(6): 387-397, 2022 06.
Article in English | MEDLINE | ID: covidwho-1815552

ABSTRACT

The rapid development of multiple vaccines providing strong protection from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been a major achievement. There is now compelling evidence for the role of neutralizing antibodies in protective immunity. T cells may play a role in resolution of primary SARS-CoV-2 infection, and there is a widely expressed view that T cell-mediated immunity also plays an important role in vaccine-mediated protection. Here we discuss the role of vaccine-induced T cells in two distinct stages of infection: firstly, in protection from acquisition of symptomatic SARS-CoV-2 infection following exposure; secondly, if infection does occur, the potential for T cells to reduce the risk of developing severe COVID-19. We describe several lines of evidence that argue against a direct impact of vaccine-induced memory T cells in preventing symptomatic SARS-CoV-2 infection. However, the contribution of T cell immunity in reducing the severity of infection, particularly in infection with SARS-CoV-2 variants, remains to be determined. A detailed understanding of the role of T cells in COVID-19 is critical for next-generation vaccine design and development. Here we discuss the challenges in determining a causal relationship between vaccine-induced T cell immunity and protection from COVID-19 and propose an approach to gather the necessary evidence to clarify any role for vaccine-induced T cell memory in protection from severe COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , COVID-19 Vaccines , Humans
13.
Cell ; 185(11): 1875-1887.e8, 2022 05 26.
Article in English | MEDLINE | ID: covidwho-1778028

ABSTRACT

We examined antibody and memory B cell responses longitudinally for ∼9-10 months after primary 2-dose SARS-CoV-2 mRNA vaccination and 3 months after a 3rd dose. Antibody decay stabilized between 6 and 9 months, and antibody quality continued to improve for at least 9 months after 2-dose vaccination. Spike- and RBD-specific memory B cells remained durable over time, and 40%-50% of RBD-specific memory B cells simultaneously bound the Alpha, Beta, Delta, and Omicron variants. Omicron-binding memory B cells were efficiently reactivated by a 3rd dose of wild-type vaccine and correlated with the corresponding increase in neutralizing antibody titers. In contrast, pre-3rd dose antibody titers inversely correlated with the fold-change of antibody boosting, suggesting that high levels of circulating antibodies may limit the added protection afforded by repeat short interval boosting. These data provide insight into the quantity and quality of mRNA-vaccine-induced immunity over time through 3 or more antigen exposures.


Subject(s)
COVID-19 Vaccines , COVID-19 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Humans , RNA, Messenger , SARS-CoV-2 , Vaccines, Synthetic , mRNA Vaccines
14.
Clin Infect Dis ; 75(1): e878-e879, 2022 Aug 24.
Article in English | MEDLINE | ID: covidwho-1769230

ABSTRACT

The vaccine candidate CVnCoV (CUREVAC) showed surprisingly low efficacy in a recent phase 3 trial compared with other messenger RNA (mRNA) vaccines. Here we show that the low efficacy follows from the dose used and the presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and is predicted by the neutralizing antibody response induced by the vaccine.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , SARS-CoV-2
15.
Nat Immunol ; 23(5): 768-780, 2022 05.
Article in English | MEDLINE | ID: covidwho-1751739

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and vaccination elicit CD4+ T cell responses to the spike protein, including circulating follicular helper T (cTFH) cells that correlate with neutralizing antibodies. Using a novel HLA-DRB1*15:01/S751 tetramer to track spike-specific CD4+ T cells, we show that primary infection or vaccination induces robust S751-specific CXCR5- and cTFH cell memory responses. Secondary exposure induced recall of CD4+ T cells with a transitory CXCR3+ phenotype, and drove expansion of cTFH cells transiently expressing ICOS, CD38 and PD-1. In both contexts, cells exhibited a restricted T cell antigen receptor repertoire, including a highly public clonotype and considerable clonotypic overlap between CXCR5- and cTFH populations. Following a third vaccine dose, the rapid re-expansion of spike-specific CD4+ T cells contrasted with the comparatively delayed increase in antibody titers. Overall, we demonstrate that stable pools of cTFH and memory CD4+ T cells established by infection and/or vaccination are efficiently recalled upon antigen reexposure and may contribute to long-term protection against SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Epitopes/metabolism , Humans , Receptors, CXCR5/metabolism , T-Lymphocytes, Helper-Inducer
16.
Nature ; 602(7898): 654-656, 2022 02.
Article in English | MEDLINE | ID: covidwho-1616992

ABSTRACT

The emergence of the SARS-CoV-2 variant of concern Omicron (Pango lineage B.1.1.529), first identified in Botswana and South Africa, may compromise vaccine effectiveness and lead to re-infections1. Here we investigated Omicron escape from neutralization by antibodies from South African individuals vaccinated with Pfizer BNT162b2. We used blood samples taken soon after vaccination from individuals who were vaccinated and previously infected with SARS-CoV-2 or vaccinated with no evidence of previous infection. We isolated and sequence-confirmed live Omicron virus from an infected person and observed that Omicron requires the angiotensin-converting enzyme 2 (ACE2) receptor to infect cells. We compared plasma neutralization of Omicron relative to an ancestral SARS-CoV-2 strain and found that neutralization of ancestral virus was much higher in infected and vaccinated individuals compared with the vaccinated-only participants. However, both groups showed a 22-fold reduction in vaccine-elicited neutralization by the Omicron variant. Participants who were vaccinated and had previously been infected exhibited residual neutralization of Omicron similar to the level of neutralization of the ancestral virus observed in the vaccination-only group. These data support the notion that reasonable protection against Omicron may be maintained using vaccination approaches.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , BNT162 Vaccine/immunology , Immune Evasion/immunology , Neutralization Tests , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2/metabolism , Animals , Cell Line , Chlorocebus aethiops , Humans , Mutation , SARS-CoV-2/classification , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
17.
Clin Transl Immunology ; 10(11): e1354, 2021.
Article in English | MEDLINE | ID: covidwho-1487459

ABSTRACT

OBJECTIVES: SARS-CoV-2 can be transmitted by aerosols, and the ocular surface may be an important route of transmission. Little is known about protective antibody responses to SARS-CoV-2 in tears after infection or vaccination. We analysed the SARS-CoV-2-specific IgG and IgA responses in human tears after either COVID-19 infection or vaccination. METHODS: We measured the antibody responses in 16 subjects with COVID-19 infection for an average of 7 months before, and 15 subjects before and 2 weeks post-Comirnaty (Pfizer-BioNtech) vaccination. Plasma, saliva and basal tears were collected. Eleven pre-pandemic individuals were included as healthy controls. RESULTS: IgG antibodies to spike and nucleoprotein were detected in tears, saliva and plasma from subjects with prior SARS-CoV-2 infection in comparison with uninfected controls. While receptor-binding domain (RBD)-specific antibodies were detected in plasma, minimal RBD-specific antibodies were detected in tears and saliva. By contrast, high levels of IgG antibodies to spike and RBD, but not nucleoprotein, were induced in tears, saliva and plasma of subjects receiving 2 doses of the Comirnaty vaccine. Increased levels of IgA1 and IgA2 antibodies to SARS-CoV-2 antigens were detected in plasma following infection or vaccination but were unchanged in tears and saliva. Comirnaty vaccination induced high neutralising Abs in the plasma, but limited neutralising antibodies were detected in saliva or tears. CONCLUSION: Both infection and vaccination induce SARS-CoV-2-specific IgG antibodies in tears. RBD-specific IgG antibodies in tears were induced by vaccination but were not present 7 months post-infection. This suggests the neutralising antibodies may be low in the tears late following infection.

18.
Science ; 374(6572): abm0829, 2021 Dec 03.
Article in English | MEDLINE | ID: covidwho-1467659

ABSTRACT

The durability of immune memory after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) messenger RNA (mRNA) vaccination remains unclear. In this study, we longitudinally profiled vaccine responses in SARS-CoV-2­naïve and ­recovered individuals for 6 months after vaccination. Antibodies declined from peak levels but remained detectable in most subjects at 6 months. By contrast, mRNA vaccines generated functional memory B cells that increased from 3 to 6 months postvaccination, with the majority of these cells cross-binding the Alpha, Beta, and Delta variants. mRNA vaccination further induced antigen-specific CD4+ and CD8+ T cells, and early CD4+ T cell responses correlated with long-term humoral immunity. Recall responses to vaccination in individuals with preexisting immunity primarily increased antibody levels without substantially altering antibody decay rates. Together, these findings demonstrate robust cellular immune memory to SARS-CoV-2 and its variants for at least 6 months after mRNA vaccination.


Subject(s)
COVID-19 Vaccines/immunology , Immunologic Memory , SARS-CoV-2/genetics , SARS-CoV-2/immunology , mRNA Vaccines/immunology , Humans
19.
Trends Immunol ; 42(11): 956-959, 2021 11.
Article in English | MEDLINE | ID: covidwho-1440136

ABSTRACT

Reformulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines with variant strains is being pursued to combat the global surge in infections. We hypothesize that this may be suboptimal due to immune imprinting from earlier vaccination or infection with the original SARS-CoV-2 strain. New strategies may be needed to improve efficacy of SARS-CoV-2 variant vaccines.


Subject(s)
COVID-19 , Vaccines , COVID-19 Vaccines , Humans , SARS-CoV-2
20.
Cell Rep ; 37(2): 109822, 2021 10 12.
Article in English | MEDLINE | ID: covidwho-1433046

ABSTRACT

Potent neutralizing monoclonal antibodies are one of the few agents currently available to treat COVID-19. SARS-CoV-2 variants of concern (VOCs) that carry multiple mutations in the viral spike protein can exhibit neutralization resistance, potentially affecting the effectiveness of some antibody-based therapeutics. Here, the generation of a diverse panel of 91 human, neutralizing monoclonal antibodies provides an in-depth structural and phenotypic definition of receptor binding domain (RBD) antigenic sites on the viral spike. These RBD antibodies ameliorate SARS-CoV-2 infection in mice and hamster models in a dose-dependent manner and in proportion to in vitro, neutralizing potency. Assessing the effect of mutations in the spike protein on antibody recognition and neutralization highlights both potent single antibodies and stereotypic classes of antibodies that are unaffected by currently circulating VOCs, such as B.1.351 and P.1. These neutralizing monoclonal antibodies and others that bind analogous epitopes represent potentially useful future anti-SARS-CoV-2 therapeutics.


Subject(s)
Angiotensin-Converting Enzyme 2/immunology , Antibodies, Neutralizing/immunology , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/ultrastructure , Animals , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/therapeutic use , Antibodies, Neutralizing/ultrastructure , Antibodies, Viral/immunology , COVID-19/immunology , Cricetinae , Cryoelectron Microscopy/methods , Epitopes/immunology , Female , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , Neutralization Tests , Protein Binding/physiology , Receptors, Virus/metabolism , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL